Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks
نویسندگان
چکیده
BACKGROUND The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. RESULTS In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. CONCLUSION We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks.
منابع مشابه
Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملMapping of TP53 protein network using cytoscape software
TP53 acts as a tumor suppressor in cancer. It induces cell cycle arrest or apoptosis in response to cellular stress and damage. p53 gene alteration could cause uncontrolled cell proliferation.In the present study, we used TP53 gene as the seed in the construction of a protein-protein functional association network to identify genes that might involve in tumorgenesis process with TP53. TP53 prot...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملIdentification of ovarian cancer subtype-specific network modules and candidate drivers through an integrative genomics approach
Identification of cancer subtypes and associated molecular drivers is critically important for understanding tumor heterogeneity and seeking effective clinical treatment. In this study, we introduced a simple but efficient multistep procedure to define ovarian cancer types and identify core networks/pathways and driver genes for each subtype by integrating multiple data sources, including mRNA ...
متن کاملComparison of Hubs in Effective Normal and Tumor Protein Interaction Networks
ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015